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Abstract: In this paper, I quantify the contribution of a subpopulation to inequality. This is defined 
as the sum of the contributions of its members, with these contributions computed as the impact 
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Recentered Influence Function). The decomposition is shown to verify various attractive 
properties. I also discuss alternative approaches used in the literature of factor inequality 
decompositions. I show that the RIF and the marginal and Shapley factor contributions are 
approximately equal in the case of the Mean Log Deviation, the index with the best additive 
decomposability properties, when the same normalization is used. In an empirical illustration, I 
use the approach to identify how the richest, highly educated, and urban population has 
disproportionally contributed to high and increasing inequality in Mozambique in recent years. 
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1 Introduction 

The analysis of inequality by subpopulations has long been a key element for a better understanding 
of inequality levels and trends across countries. The aggregate decomposition of inequality 
between and within subpopulations obtained from various geographical and socioeconomic 
characteristics is a simple and powerful tool that helps us to identify the sources of inequality and 
its dynamics in different societies. The literature has already developed a sound analytical 
framework. Shorrocks (1984, 1988) has restricted the class of measures that are subgroup 
consistent, for which overall inequality increases with inequality in any group, ceteris paribus. This 
class is defined by the family of Generalized Entropy indices and any monotonic transformation, 
which includes the Atkinson family but not the popular Gini index. Scalar transformations of the 
Generalized Entropy family, alone, define a more specific class, the set of additively decomposable 
measures, in which inequality is the sum of inequality between groups and the weighted sum of 
inequality within groups (Shorrocks, 1980). Two members of this class proposed by Theil (1967)—
the Mean Log Deviation and the Theil index—have become the most popular in empirical analysis 
of decompositions for their straight interpretation of the within-group component because the 
weights are respectively given by population and income shares. The Mean Log Deviation can be 
singled out as the only one whose decomposition does not depend on the path followed to break 
total inequality into its two components. Nevertheless, the decomposability properties of other 
indices have also been explored and used in empirical analyses. This is true of the role of 
overlapping among subpopulations in the Gini index (e.g. Bhattacharia and Mahalanobis, 1967 or 
Rao, 1969) and the multiplicative decomposability of the Atkinson family of (equality) indices (e.g. 
Blackorby et al, 1981). These aggregate decompositions, however, do not allow to explicitly 
identify the role of specific groups. 

This paper contributes to this classical literature by proposing a simple framework into which we 
can go a step further and provide a more detailed decomposition by identifying the contribution 
of each subpopulation to overall inequality using the most popular indices.1 In the case of 
additively decomposable indices, one can also identify the contribution to each component 
(between-group and within-group), mimicking the aggregate decomposition.  

Following an individualistic approach, I define the contribution of a group to inequality as the sum 
of the contributions of its members, obtained by assessing the impact that a marginal increase in 
the proportion of people with a specific income would have on total inequality using the statistical 
notion of the Recentered Influence Function (RIF). This is not the only reasonable approach, 
though. For that reason, I also explore alternative approaches adapted from the factor inequality 
decomposition literature. I argue that contributions based on the natural decomposition rule of 
some indices are not especially attractive in this context. Then, I focus on the marginal contribution 
of a group, along an extension based on the Shapley decomposition that averages over all possible 
sequences in which groups are considered. For the especial case of the Mean Log Deviation—the 
index with the best additive decomposability properties—I show that the RIF, marginal and 
Shapley approaches are almost equivalent assuming a normalization property that is reasonable in 
the context of additively decomposable indices, i.e. a group with all incomes equal to the 
population mean has a null contribution to overall inequality. The three approaches may differ, 
though, for other indices of the same class.  

                                                 

1 Although I focus here on inequality, the same approach can be used to explain the contribution of groups to other 
distributional statistics such as poverty, mobility, polarization, etc. 
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The contributions obtained with all three approaches will generally verify the usual properties of 
the target inequality indices (such as replication or scale invariance, or higher sensitivity to certain 
parts of the distribution). In this context, however, the linear RIF approach provides higher 
consistency in the decomposition because group contributions add up to total inequality and are 
independent of the level of disaggregation of groups. Furthermore, the RIF decomposition is 
straightforward to compute (including the standard errors). 

The RIF contribution of a group can be obtained from the coefficients of group membership 
dummies in RIF regressions. Thus, the detailed RIF decomposition by subpopulations provides 
the researcher with a tool that is strongly complementary with one of the two main approaches 
used in the literature of regression-based inequality decompositions proposed in Firpo et al. (2007, 
2009).2 As Cowell and Fiorio (2011) have already noted, the two branches of the literature evolved 
highly disconnected one to each other. 

I illustrate the potential of this approach with an analysis of the role of subpopulations defined by 
different household characteristics to explain the level and trend of consumption inequality in 
Mozambique, a low-income sub-Saharan African country that has shown a significant increase in 
inequality in recent years. The results will show the disproportional contributions to inequality and 
its increase over time of top percentiles, urban areas—especially the capital Maputo—and of 
households with heads having higher education. 

The next section describes the proposed RIF decomposition, while the third section discusses 
other possible approaches. The fourth section introduces the data and an application to explain 
inequality in Mozambique in the 2008/09–2014/15 period. The last section concludes with final 
remarks. 

2 The RIF decomposition of inequality by subpopulations 

2.1 The total contribution of a subpopulation to inequality 

Let us consider an exhaustive partition of a population into 𝐾𝐾 ≥ 1 disjoint groups, with superscript 
𝑘𝑘 referring to the 𝑘𝑘th group. Each group has a distribution 𝒚𝒚𝒌𝒌 = (𝑦𝑦1𝑘𝑘, . . ,𝑦𝑦𝑛𝑛𝑘𝑘

𝑘𝑘 ), with population 
size 𝑛𝑛𝑘𝑘 and mean income 𝜇𝜇𝑘𝑘. The population of 𝑛𝑛 = ∑ 𝑛𝑛𝑘𝑘𝐾𝐾

𝑘𝑘=1  individuals is represented by 𝒚𝒚 =
(𝒚𝒚𝟏𝟏, … ,𝒚𝒚𝑲𝑲) with mean income 𝜇𝜇. 

The Influence Function of an inequality index 𝐼𝐼𝐼𝐼(𝑥𝑥; 𝐼𝐼(𝒚𝒚)) measures the impact on inequality of 
marginally increasing the population mass at a certain income 𝑥𝑥 (i.e. a small contamination) and 
has an expected value of zero. More formally, if 𝒚𝒚𝜺𝜺 is a mixture distribution assigning a probability 
1 − 𝜀𝜀 to the original distribution 𝒚𝒚 and 𝜀𝜀 to 𝑥𝑥 (see Hampel, 1974): 

𝐼𝐼𝐼𝐼(𝑥𝑥; 𝐼𝐼(𝒚𝒚)) = 𝜕𝜕
𝜕𝜕𝜀𝜀
𝐼𝐼(𝒚𝒚𝜺𝜺)|𝜀𝜀=0 ; with 𝐸𝐸(𝐼𝐼𝐼𝐼�𝑥𝑥; 𝐼𝐼(𝒚𝒚)� = 0    

                                                 

2 These techniques allow to identify the contribution of several factors at the same time and/or to disentangle the 
compositional and structural effects in distributional changes. The other main approach is based on the factor 
decomposition of inequality using log-income regressions instead (Fields, 2003 and subsequent literature). 



3 

The Recentered Influence Function 𝑅𝑅𝐼𝐼𝐼𝐼(𝑥𝑥; 𝐼𝐼(𝒚𝒚)) is obtained after recentering the IF (and its 
expected value) at the value of the target statistic (Firpo et al., 2007): 

𝑅𝑅𝐼𝐼𝐼𝐼(𝑥𝑥; I(𝒚𝒚)) = 𝐼𝐼(𝒚𝒚) + 𝐼𝐼𝐼𝐼(𝑥𝑥; I(𝒚𝒚)); with 𝐸𝐸(𝑅𝑅𝐼𝐼𝐼𝐼�𝑥𝑥; 𝐼𝐼(𝒚𝒚)� = 𝐼𝐼(𝒚𝒚) .   

The IF and RIF of several inequality measures have already been explored (Monti, 1991; 
Schechtman, 1991; Cowell and Flachaire, 2002 and 2007; or Essama-Nssah and Lambert, 2012). 
The corresponding expressions for discrete distributions for Gini and the Generalized Entropy 
family are shown in Table 1. 

Let the contribution of the 𝑗𝑗th individual of group 𝑘𝑘 to overall inequality 𝐼𝐼(𝒚𝒚), labelled as 𝑆𝑆𝑗𝑗𝑘𝑘, be 
the corresponding value of the per capita RIF estimated at 𝑦𝑦𝑗𝑗𝑘𝑘:3 

𝑆𝑆𝑗𝑗𝑘𝑘 ≡ 𝑆𝑆𝑗𝑗𝑘𝑘(𝐼𝐼(𝒚𝒚)) = 1
𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅�𝑦𝑦𝑗𝑗𝑘𝑘; 𝐼𝐼(𝒚𝒚)�.      

The contribution of group 𝑘𝑘, labelled as 𝑆𝑆𝑘𝑘, is defined to be the sum of the contributions of its 
members: 

𝑆𝑆𝑘𝑘 ≡ 𝑆𝑆𝑘𝑘(𝐼𝐼(𝒚𝒚)) = ∑ 𝑆𝑆𝑗𝑗𝑘𝑘𝑛𝑛𝑘𝑘
𝑗𝑗=1 .      

The relationship of 𝑆𝑆𝑘𝑘 with the RIF regressions is straightforward, when group membership 
dummies (𝜆𝜆𝑘𝑘 = 1 if an individual belongs to group 𝑘𝑘; 0 otherwise) are used as explanatory 
variables: 

𝑅𝑅𝑅𝑅𝑅𝑅�𝑦𝑦𝑗𝑗𝑘𝑘; 𝐼𝐼(𝒚𝒚)� = ∑ 𝛽̂𝛽𝑘𝑘𝜆𝜆𝑘𝑘𝐾𝐾
𝑘𝑘=1 ; where 𝛽̂𝛽𝑘𝑘 ≡ 𝑆𝑆̅𝑘𝑘 = 1

𝑛𝑛𝑘𝑘
∑ 𝑅𝑅𝑅𝑅𝑅𝑅�𝑦𝑦𝑗𝑗𝑘𝑘; 𝐼𝐼(𝒚𝒚)�𝑛𝑛𝑘𝑘
𝑗𝑗=1 .  

The corresponding estimated coefficient of the RIF regression indicates the average RIF of the 
members of the group, 𝑆𝑆̅𝑘𝑘, and the RIF group contribution can be obtained by multiplying this 
value by the group population share, after aggregating for all members: 

𝑆𝑆𝑘𝑘 = 1
𝑛𝑛
∑ 𝛽̂𝛽𝑘𝑘𝜆𝜆𝑗𝑗𝑘𝑘𝑛𝑛𝑘𝑘
𝑗𝑗=1 = 𝑛𝑛𝑘𝑘

𝑛𝑛
 𝑆𝑆̅𝑘𝑘.     

In this context, in line with the RIF generalization of the Blinder (1973)-Oaxaca (1973) approach, 
a change in inequality could be decomposed into a compositional effect (i.e. changes in population 
sizes) and a structural effect (i.e. changes on the average RIF):4 

∆𝐼𝐼(𝒚𝒚) = ∑ ∆𝑆𝑆𝑘𝑘𝐾𝐾
𝑘𝑘=1 = ∑ ∆(𝑛𝑛𝑘𝑘/𝑛𝑛)𝑆𝑆̅𝑘𝑘𝐾𝐾

𝑘𝑘=1 + ∑ (𝑛𝑛𝑘𝑘/𝑛𝑛)∆𝑆𝑆̅𝑘𝑘𝐾𝐾
𝑘𝑘=1 .   

Where ∆ stands for the change in any statistic between the two distributions. This decomposition 
is obtained after just adding and subtracting a counterfactual distribution with the initial group 
sizes (characteristics) and the final average RIF (coefficients): 

                                                 

3 Cowell and Victoria-Feser (1996) have previously used the IF to study the robustness of various inequality indices 
to measurement error. 
4 The most popular case has been the decomposition of the difference in quantiles (known as unconditional quantile 
decomposition (Firpo et al. 2007, 2009), but the approach has also been applied to aggregate inequality measures like 
Gini (e.g. Gradín, 2016 and referenced literature) and others (e.g. Gradín, 2018). 
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𝐼𝐼𝑐𝑐(𝒚𝒚) = ∑ 𝑛𝑛𝑘𝑘

𝑛𝑛
(𝑆𝑆̅𝑘𝑘 + ∆𝑆𝑆̅𝑘𝑘)𝐾𝐾

𝑘𝑘=1 . 

It is interesting to note that the RIF approach applied to other simpler statistics provides very 
intuitive contributions. For example, the group size is the RIF contribution for the population size. 
The group mean and head-count ratio multiplied by the population share are the contributions for 
the corresponding population statistics (where 𝑧𝑧 is a given poverty threshold):5 

𝑆𝑆𝑘𝑘(𝑛𝑛) = 𝑛𝑛𝑘𝑘;       

𝑆𝑆𝑘𝑘(𝜇𝜇) = 𝑛𝑛𝑘𝑘

𝑛𝑛
𝜇𝜇𝑘𝑘;      

𝑆𝑆𝑘𝑘(𝐻𝐻(𝒚𝒚; 𝑧𝑧)) = 𝑛𝑛𝑘𝑘

𝑛𝑛
𝐻𝐻(𝒚𝒚𝒌𝒌; 𝑧𝑧).     

The RIF contributions will inherit the properties of the corresponding inequality indices. For 
example, they will be invariant to replications of the entire population (population principle): 

𝑆𝑆𝑘𝑘(𝐼𝐼(𝒚𝒚))= 𝑆𝑆𝑘𝑘�𝐼𝐼(𝒚𝒚′)� for any replication 𝒚𝒚′ = (𝒚𝒚, … ,𝒚𝒚).   

They will also be invariant to the multiplication of all incomes in the population by the same factor 
(scale invariance): 

𝑆𝑆𝑘𝑘(𝐼𝐼(𝒚𝒚))= 𝑆𝑆𝑘𝑘(𝐼𝐼(𝜆𝜆𝒚𝒚)) for any 𝜆𝜆 > 0.      

The RIF of inequality indices generally show a U-pattern with respect to income (e.g. Gradín, 
2018). As a result, the contribution of a group to inequality will tend to be higher, ceteris paribus, 
the more people of this group have extreme incomes. The U-pattern will be asymmetric, though, 
reflecting the specific degree of sensitivity to income transfers that occur at different points of the 
distribution. The empirical section compares the cases of Gini, Theil and Mean Log Deviation 
indices for Mozambique. 

Furthermore, the RIF decomposition verifies some important decomposability properties. Due to 
its linearity, the decomposition is consistent, overall inequality can be written as just the sum of all 
individual or group contributions:  

𝐼𝐼(𝒚𝒚) = ∑ 𝑆𝑆𝑘𝑘𝐾𝐾
𝑘𝑘=1 = ∑ ∑ 𝑆𝑆𝑗𝑗𝑘𝑘𝑛𝑛𝑘𝑘

𝑗𝑗=1
𝐾𝐾
𝑘𝑘=1 .      

Therefore, one might be interested in estimating the proportion of total inequality explained by 
each group, i.e. the relative total contribution: 

𝑠𝑠𝑘𝑘 = 𝑆𝑆𝑘𝑘 𝐼𝐼(𝒚𝒚)⁄ .       

Consistency also applies to further exhaustive partitions of group 𝑘𝑘, e.g. the contribution of a 
region in a country will be the sum of the contributions of the provinces integrating that region if 
they are computed separately.  

                                                 

5 Given that 𝑅𝑅𝐼𝐼𝐼𝐼(𝑦𝑦𝑖𝑖 ;𝑛𝑛) = 1, 𝑅𝑅𝐼𝐼𝐼𝐼(𝑦𝑦𝑖𝑖 ; 𝜇𝜇) = 𝑦𝑦𝑖𝑖 , and 𝑅𝑅𝐼𝐼𝐼𝐼(𝑦𝑦𝑖𝑖 ;𝐻𝐻(𝑦𝑦𝑖𝑖 , 𝑧𝑧)) = 1 if 𝑦𝑦𝑖𝑖 < 𝑧𝑧 (= 0 otherwise). 
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Additionally, 𝑆𝑆𝑘𝑘 also verifies path independence with respect to the order in which the groups are 
considered and is invariant to the level of aggregation of other groups: the contribution of a group 
does not depend on how the other groups were clustered. For example, the contribution of a 
region does not change if the other regions are pooled together or considered as separate entities. 
Given the large variety of decomposability approaches, the next section investigates other 
decomposability features in the most common approach, additive decomposability. 

The normalization and range of 𝑆𝑆𝑘𝑘 are index-specific. For example, the Generalized Entropy 
family explored in more detail in the next section, verifies an intuitive normalization property, 
according to which 𝑆𝑆𝑘𝑘 = 0 for a group with all incomes equal to the population mean (𝑦𝑦𝑗𝑗𝑘𝑘 =
𝜇𝜇,∀ 𝑗𝑗 = 1, … ,𝑛𝑛𝑘𝑘), while 𝑆𝑆1 = 𝐼𝐼(𝒚𝒚) if there is only one group in the population (𝐾𝐾 = 1). One 
special member of this family, the Mean Log Deviation—unlike other indices—also verifies an 
intuitive range property: 𝑆𝑆𝑘𝑘 will always fall between 0 and 𝐼𝐼(𝒚𝒚).  

2.2 The case of additively decomposable indices 

An inequality index is additively decomposable (e.g. Shorrocks, 1984) if it can be written as the 
weighted sum of the inequality values calculated for the subpopulations (within-group inequality 
𝐼𝐼𝑊𝑊) plus the contribution arising from differences between subpopulation means (between-group 
inequality 𝐼𝐼𝐵𝐵): 

𝐼𝐼(𝒚𝒚) = 𝐼𝐼𝐵𝐵 + 𝐼𝐼𝑊𝑊.     

Let 𝟏𝟏𝒔𝒔 be a row vector of s ones and 𝝁𝝁𝒌𝒌 = (𝜇𝜇1𝟏𝟏𝒏𝒏𝟏𝟏 , … , 𝜇𝜇𝐾𝐾𝟏𝟏𝒏𝒏𝑲𝑲) the vector in which individual 
incomes 𝑦𝑦𝑗𝑗𝑘𝑘 are replaced by their corresponding group means 𝜇𝜇𝑘𝑘. Then, inequality within groups 
is defined as the level of inequality that goes away after equalizing incomes within groups, shifting 
from vector 𝒚𝒚 to 𝝁𝝁𝒌𝒌: 

𝐼𝐼𝑊𝑊 = 𝐼𝐼(𝒚𝒚) − 𝐼𝐼(𝝁𝝁𝒌𝒌) = ∑ 𝐼𝐼�𝒚𝒚𝒌𝒌�𝑤𝑤𝐼𝐼
𝑘𝑘𝐾𝐾

𝑘𝑘=1 ,     

with 𝑤𝑤𝐼𝐼
𝑘𝑘 being index-specific weights that might be a function of group population shares 𝑛𝑛𝑘𝑘/𝑛𝑛 

and relative incomes 𝜇𝜇𝑘𝑘/𝜇𝜇. 

Inequality between groups is the remaining level of inequality with 𝝁𝝁𝒌𝒌: 

𝐼𝐼𝐵𝐵 = 𝐼𝐼�𝝁𝝁𝒌𝒌�.       

The class of inequality indices that are additively decomposable and verify two basic properties, 
scale invariance and population replication, belongs (up to a scalar transformation) to the 
Generalized Entropy family 𝐼𝐼𝛼𝛼(𝒚𝒚), including its limit when 𝛼𝛼 = 0,1 (Shorrocks, 1984). If subscript 
i identifies the ith individual of vector 𝑦𝑦: 

𝐼𝐼𝛼𝛼(𝒚𝒚) = 1
𝛼𝛼(𝛼𝛼−1)

 �1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖

𝜇𝜇
�
𝛼𝛼

𝑛𝑛
𝑖𝑖=1 − 1�; with 𝑤𝑤𝐼𝐼𝛼𝛼

𝑘𝑘 = 𝑛𝑛𝑘𝑘

𝑛𝑛
�𝜇𝜇

𝑘𝑘

𝜇𝜇
�
𝛼𝛼

.  
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The most popular indices of this class are the two limit cases obtained for 𝛼𝛼 = 0, 1: The Mean 
Log Deviation (M) and Theil (T) indices, also previously characterized by Bourguignon (1979) and 
Foster (1983): 

𝑀𝑀 ≡ 𝐼𝐼0 = 1
𝑛𝑛
∑ 𝑙𝑙𝑙𝑙 𝜇𝜇

𝑦𝑦𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ; 𝑤𝑤𝑀𝑀

𝑘𝑘 = 𝑛𝑛𝑘𝑘

𝑛𝑛
.    

𝑇𝑇 ≡ 𝐼𝐼1 = 1
𝑛𝑛
∑ 𝑦𝑦𝑖𝑖

𝜇𝜇
𝑙𝑙𝑙𝑙 𝑦𝑦𝑖𝑖

𝜇𝜇
 𝑛𝑛

𝑖𝑖=1 ; 𝑤𝑤𝑇𝑇
𝑘𝑘 = 𝑛𝑛𝑘𝑘

𝑛𝑛
𝜇𝜇𝑘𝑘

𝜇𝜇
.    

These are the two only cases in which the weights 𝑤𝑤𝐼𝐼𝛼𝛼
𝑘𝑘  used to construct the within-group 

component, respectively population and income shares, add up to 1. In other cases, the sum of 
weights depends on the between-group term, making the interpretation more difficult. 

Among these two indices, M is known to be more sensitive to income transfers that occur in the 
lower tail of the distribution and has better decomposability properties. The decomposition of M 
is more genuine because the within-group component does not depend on group mean incomes. 
As a result, only the additive decomposition of M is independent of the path followed to define 
the two components (e.g. Chakravarty, 2009; Foster and Shneyerov, 2000).6  

The contributions to total inequality are given by: 

𝑆𝑆𝑘𝑘(𝐼𝐼𝛼𝛼) = 𝑛𝑛𝑘𝑘

𝑛𝑛
�𝐼𝐼𝛼𝛼𝑘𝑘 − 𝛼𝛼 �𝐼𝐼𝛼𝛼 + 1

𝛼𝛼(𝛼𝛼−1)
� 𝜇𝜇

𝑘𝑘−𝜇𝜇
𝜇𝜇
�; 𝛼𝛼 ≠ 0, 1.     

𝑆𝑆𝑘𝑘(𝑀𝑀) = 𝑛𝑛𝑘𝑘

𝑛𝑛
�𝑀𝑀𝑘𝑘 + 𝜇𝜇𝑘𝑘−𝜇𝜇

𝜇𝜇
+ 𝑙𝑙𝑙𝑙 𝜇𝜇

𝜇𝜇𝑘𝑘
�.     

𝑆𝑆𝑘𝑘(𝑇𝑇) = 𝑛𝑛𝑘𝑘

𝑛𝑛
��𝜇𝜇−𝜇𝜇

𝑘𝑘

𝜇𝜇
� (𝑇𝑇 + 1) + 𝜇𝜇𝑘𝑘

𝜇𝜇
𝑙𝑙𝑙𝑙 𝜇𝜇𝑘𝑘

𝜇𝜇
+ 𝜇𝜇𝑘𝑘

𝜇𝜇
𝑇𝑇𝑘𝑘�.    

In parallel to the aggregate decomposition above, we can consistently define the contribution of 
each group to the within-group term as the contribution to inequality that goes away after 
equalizing incomes within groups. The contribution to inequality between groups is the remaining 
contribution, based on the aggregate impact on between-group inequality of marginally increasing 
the population with 𝜇𝜇𝑘𝑘: 

𝑆𝑆𝑊𝑊𝑘𝑘 = 𝑆𝑆𝑘𝑘�𝐼𝐼(𝒚𝒚)� − 𝑆𝑆𝑘𝑘 �𝐼𝐼�𝝁𝝁𝒌𝒌��.     

𝑆𝑆𝐵𝐵𝑘𝑘 = 𝑆𝑆𝑘𝑘 �𝐼𝐼�𝝁𝝁𝒌𝒌�� = 𝑛𝑛𝑘𝑘
𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅 �𝜇𝜇𝑘𝑘; 𝐼𝐼�𝝁𝝁𝒌𝒌��.     

with 𝑆𝑆𝑘𝑘 = 𝑆𝑆𝐵𝐵𝑘𝑘 + 𝑆𝑆𝑊𝑊𝑘𝑘 ;      

and 𝐼𝐼𝐵𝐵 = ∑ 𝑆𝑆𝐵𝐵𝑘𝑘𝐾𝐾
𝑘𝑘=1  and 𝐼𝐼𝑊𝑊 = ∑ 𝑆𝑆𝑊𝑊𝑘𝑘𝐾𝐾

𝑘𝑘=1 .     

                                                 

6 As an alternative to the case mentioned above, inequality between groups could be defined first, as the level of 
inequality that goes away when incomes are rescaled in each group so as to eliminate mean differences across groups. 
Within-group inequality would be then the remaining level when there is no inequality between groups. This would 
not affect the aggregate decomposition of M, neither the groups contribution to each component defined below. 
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In the two cases of interest, it is straightforward to obtain the corresponding expressions 
(summarized in Table 1). The between-group component: 

𝑆𝑆𝐵𝐵𝑘𝑘(𝑀𝑀) = 𝑛𝑛𝑘𝑘

𝑛𝑛
�𝜇𝜇

𝑘𝑘−𝜇𝜇
𝜇𝜇

+ 𝑙𝑙𝑙𝑙 𝜇𝜇
𝜇𝜇𝑘𝑘
�;     

𝑆𝑆𝐵𝐵𝑘𝑘(𝑇𝑇) = 𝑛𝑛𝑘𝑘

𝑛𝑛
��𝜇𝜇−𝜇𝜇

𝑘𝑘

𝜇𝜇
� (𝑇𝑇𝐵𝐵 + 1) + 𝜇𝜇𝑘𝑘

𝜇𝜇
𝑙𝑙𝑙𝑙 𝜇𝜇𝑘𝑘

𝜇𝜇
�.    

The between-group component in both indices is the sum of two terms: the direct contribution to 
the indices, which is the function of the relative mean that goes into the summation in 𝐼𝐼𝐵𝐵 

(respectively 𝑛𝑛
𝑘𝑘

𝑛𝑛
𝑙𝑙𝑙𝑙 𝜇𝜇

𝜇𝜇𝑘𝑘
 and 𝑛𝑛

𝑘𝑘

𝑛𝑛
𝜇𝜇𝑘𝑘

𝜇𝜇
𝑙𝑙𝑙𝑙 𝜇𝜇𝑘𝑘

𝜇𝜇
), and the indirect contribution capturing the impact of each 

group in the population mean (and thus in the relative means of the other groups).  

The between-group term 𝑆𝑆𝐵𝐵𝑘𝑘 will be zero for M and T whenever 𝜇𝜇𝑘𝑘 = 𝜇𝜇, and will monotonically 
increase the farther 𝜇𝜇𝑘𝑘 deviates from the critical value at which it reaches its minimum (𝜇𝜇 in the 
case of M, 𝜇𝜇𝑒𝑒𝑇𝑇𝐵𝐵 > 𝜇𝜇 in the case of T). For a given relative mean income, the contribution of a 
group to this term will rise with the population size in both cases. Thus, the indices verify mean 
income and population share monotonicity properties. It is noticeable that 𝑆𝑆𝐵𝐵𝑘𝑘(𝑀𝑀), unlike 𝑆𝑆𝐵𝐵𝑘𝑘(𝑇𝑇), 
is independent of the overall between-group inequality level.  

The corresponding within-group terms are given by: 

𝑆𝑆𝑊𝑊𝑘𝑘 (𝑀𝑀) = 𝑛𝑛𝑘𝑘

𝑛𝑛
𝑀𝑀(𝒚𝒚𝒌𝒌).      

𝑆𝑆𝑊𝑊𝑘𝑘 (𝑇𝑇) = 𝑛𝑛𝑘𝑘

𝑛𝑛
�𝜇𝜇

𝑘𝑘

𝜇𝜇
𝑇𝑇(𝒚𝒚𝒌𝒌) + 𝑇𝑇𝑊𝑊 �𝜇𝜇−𝜇𝜇

𝑘𝑘

𝜇𝜇
��.     

The within-group term 𝑆𝑆𝑊𝑊𝑘𝑘 (𝑀𝑀) is just the weighted level of group inequality. 𝑆𝑆𝑊𝑊𝑘𝑘 (𝑇𝑇), however, is 
the weighted level of group inequality 𝑤𝑤𝑇𝑇

𝑘𝑘𝑇𝑇𝑘𝑘 plus another term. This second term captures the 
indirect effect that a higher population mass at 𝜇𝜇𝑘𝑘 has on the total within-group term, given that 
the weights depend on 𝜇𝜇𝑘𝑘. Thus, 𝑆𝑆𝑊𝑊𝑘𝑘 (𝑇𝑇), like 𝑆𝑆𝑊𝑊𝑘𝑘 (𝑀𝑀), will monotonically increase with group size 
and inequality. But it will also be increasing with its relative mean if the group has higher inequality 
than the weighted average, 𝑇𝑇(𝒚𝒚𝒌𝒌) > 𝑇𝑇𝑊𝑊, or decreasing otherwise.7 This is an unattractive property 
of the index decomposition related with its path dependence on the order in which 𝑇𝑇𝑊𝑊 and 𝑇𝑇𝐵𝐵 are 
defined. In particular, this implies that 𝑇𝑇(𝒚𝒚𝒌𝒌) = 0 is not enough condition for 𝑆𝑆𝑊𝑊𝑘𝑘 (𝑇𝑇) = 0, 
because group 𝑘𝑘 still influences the within-group contributions of the other groups. 

  

                                                 

7 In other words, the total effect of 𝜇𝜇𝑘𝑘 on 𝑇𝑇 is given by 𝑛𝑛
𝑘𝑘

𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅(𝜇𝜇𝑘𝑘 ,𝑇𝑇(𝒚𝒚)), that can be split into the effect on the 

between-group component, 𝑛𝑛
𝑘𝑘

𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅(𝜇𝜇𝑘𝑘 ,𝑇𝑇𝐵𝐵), and the effect on the within-group term, 𝑛𝑛

𝑘𝑘

𝑛𝑛
𝑇𝑇𝑊𝑊 �𝜇𝜇−𝜇𝜇

𝑘𝑘

𝜇𝜇
�. 
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In the same line as in T, the between-group contribution of the other members of the Generalized 
Entropy family (for 𝛼𝛼 ≠ 0, 1) depends on overall between-group inequality, while the contribution 
to the within-group term depends on the group mean and overall within-group inequality: 

𝑆𝑆𝐵𝐵𝑘𝑘(𝐼𝐼𝛼𝛼) = 𝛼𝛼 �𝐼𝐼𝐵𝐵𝛼𝛼 + 1
𝛼𝛼(𝛼𝛼−1)

� 𝑛𝑛
𝑘𝑘

𝑛𝑛
𝜇𝜇−𝜇𝜇𝑘𝑘

𝜇𝜇
;      

𝑆𝑆𝑊𝑊𝑘𝑘 (𝐼𝐼𝛼𝛼) = 𝑛𝑛𝑘𝑘

𝑛𝑛
�𝐼𝐼𝛼𝛼(𝒚𝒚𝒌𝒌) + 𝛼𝛼 𝑛𝑛𝑘𝑘

𝑛𝑛
�1 − �𝜇𝜇

𝑘𝑘

𝜇𝜇
�
1+𝛼𝛼

� 𝐼𝐼𝑊𝑊𝛼𝛼�.   
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Table 1. Summary of RIF for Gini and Generalized Entropy Family (𝐼𝐼𝛼𝛼) 

 Gini 𝑰𝑰𝜶𝜶 𝑴𝑴 ≡ 𝑰𝑰𝟎𝟎 𝑻𝑻 ≡ 𝑰𝑰𝟏𝟏 

Index 𝑛𝑛 + 1
𝑛𝑛

−
2
𝑛𝑛
� �

𝑛𝑛 + 1 − 𝑖𝑖
𝑛𝑛

�
𝑦𝑦𝑖𝑖
𝜇𝜇

𝑛𝑛

𝑖𝑖=1
 

1
𝛼𝛼(𝛼𝛼 − 1)

1
𝑛𝑛

 � ��
𝑦𝑦𝑖𝑖
𝜇𝜇
�
𝛼𝛼
− 1�

𝑛𝑛

𝑖𝑖=1
 

1
𝑛𝑛
� 𝑙𝑙𝑙𝑙

𝜇𝜇
𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 

1
𝑛𝑛
�

𝑦𝑦𝑖𝑖
𝜇𝜇
𝑙𝑙𝑙𝑙
𝑦𝑦𝑖𝑖
𝜇𝜇

𝑛𝑛

𝑖𝑖=1
 

𝑰𝑰𝑰𝑰(𝑦𝑦𝑖𝑖 , 𝑰𝑰) 2
𝑦𝑦𝑖𝑖
𝜇𝜇
�
𝑖𝑖
𝑛𝑛
−

1 + 𝐺𝐺
2

� + 2 �
1 − 𝐺𝐺

2
− 𝐿𝐿𝑖𝑖� 

1
𝛼𝛼(𝛼𝛼 − 1) ��

𝑦𝑦𝑖𝑖
𝜇𝜇
�
𝛼𝛼
− 1� − 𝐼𝐼𝛼𝛼 − 𝛼𝛼 �𝐼𝐼𝛼𝛼 +

1
𝛼𝛼(𝛼𝛼 − 1)

�
𝑦𝑦𝑖𝑖 − 𝜇𝜇
𝜇𝜇

 
𝑦𝑦𝑖𝑖 − 𝜇𝜇
𝜇𝜇

+ 𝑙𝑙𝑙𝑙
𝜇𝜇
𝑦𝑦𝑖𝑖
− 𝑀𝑀 

𝑦𝑦𝑖𝑖
𝜇𝜇
𝑙𝑙𝑙𝑙
𝑦𝑦𝑖𝑖
𝜇𝜇
−
𝑦𝑦𝑖𝑖 − 𝜇𝜇
𝜇𝜇

−
𝑦𝑦𝑖𝑖
𝜇𝜇
𝑇𝑇 

𝑹𝑹𝑹𝑹𝑹𝑹(𝑦𝑦𝑖𝑖, 𝑰𝑰) 2
𝑦𝑦𝑖𝑖
𝜇𝜇
�
𝑖𝑖
𝑛𝑛
−

1 + 𝐺𝐺
2

� + 2 �
1
2
− 𝐿𝐿𝑖𝑖� 

1
𝛼𝛼(𝛼𝛼 − 1) ��

𝑦𝑦𝑖𝑖
𝜇𝜇
�
𝛼𝛼
− 1� − 𝛼𝛼 �𝐼𝐼𝛼𝛼 +

1
𝛼𝛼(𝛼𝛼 − 1)

�
𝑦𝑦𝑖𝑖 − 𝜇𝜇
𝜇𝜇

 
𝑦𝑦𝑖𝑖 − 𝜇𝜇
𝜇𝜇

+ 𝑙𝑙𝑙𝑙
𝜇𝜇
𝑦𝑦𝑖𝑖

 
𝑦𝑦𝑖𝑖
𝜇𝜇
𝑙𝑙𝑙𝑙
𝑦𝑦𝑖𝑖
𝜇𝜇
− (𝑇𝑇 + 1) �

𝑦𝑦𝑖𝑖 − 𝜇𝜇
𝜇𝜇

� 

𝑺𝑺𝒌𝒌 2
𝑛𝑛
�

𝑗𝑗
𝑛𝑛
𝑦𝑦𝑗𝑗
𝜇𝜇

𝑛𝑛𝑘𝑘

𝑗𝑗=1
− (1 + 𝐺𝐺)

𝑛𝑛𝑘𝑘

𝑛𝑛
𝜇𝜇𝑘𝑘

𝜇𝜇
+
𝑛𝑛𝑘𝑘

𝑛𝑛
−

2
𝑛𝑛
� 𝐿𝐿𝑗𝑗𝑘𝑘

𝑛𝑛𝑘𝑘

𝑗𝑗=1
 
𝑛𝑛𝑘𝑘

𝑛𝑛
𝐼𝐼𝛼𝛼𝑘𝑘 − 𝛼𝛼 �𝐼𝐼𝛼𝛼 +

1
𝛼𝛼(𝛼𝛼 − 1)

�
𝑛𝑛𝑘𝑘

𝑛𝑛
𝜇𝜇𝑘𝑘 − 𝜇𝜇
𝜇𝜇

 
𝑛𝑛𝑘𝑘

𝑛𝑛 �𝑀𝑀𝑘𝑘 +
𝜇𝜇𝑘𝑘 − 𝜇𝜇
𝜇𝜇

+ 𝑙𝑙𝑙𝑙
𝜇𝜇
𝜇𝜇𝑘𝑘�

 
𝑛𝑛𝑘𝑘

𝑛𝑛 ��
𝜇𝜇 − 𝜇𝜇𝑘𝑘

𝜇𝜇 � (𝑇𝑇 + 1) +
𝜇𝜇𝑘𝑘

𝜇𝜇
𝑙𝑙𝑙𝑙
𝜇𝜇𝑘𝑘

𝜇𝜇
+
𝜇𝜇𝑘𝑘

𝜇𝜇
𝑇𝑇𝑘𝑘� 

𝑺𝑺𝑩𝑩𝒌𝒌   
𝛼𝛼 �𝐼𝐼𝐵𝐵𝛼𝛼 +

1
𝛼𝛼(𝛼𝛼 − 1)

�
𝑛𝑛𝑘𝑘

𝑛𝑛
𝜇𝜇 − 𝜇𝜇𝑘𝑘

𝜇𝜇
 

𝑛𝑛𝑘𝑘

𝑛𝑛 �
𝜇𝜇𝑘𝑘 − 𝜇𝜇
𝜇𝜇

+ 𝑙𝑙𝑙𝑙
𝜇𝜇
𝜇𝜇𝑘𝑘�

 
𝑛𝑛𝑘𝑘

𝑛𝑛 ��
𝜇𝜇 − 𝜇𝜇𝑘𝑘

𝜇𝜇 � (𝑇𝑇𝐵𝐵 + 1) +
𝜇𝜇𝑘𝑘

𝜇𝜇
𝑙𝑙𝑙𝑙
𝜇𝜇𝑘𝑘

𝜇𝜇 �
 

𝑺𝑺𝑾𝑾𝒌𝒌   𝑛𝑛𝑘𝑘

𝑛𝑛
𝐼𝐼𝛼𝛼𝑘𝑘 − 𝛼𝛼 �

𝑛𝑛𝑘𝑘

𝑛𝑛 �
2

��
𝜇𝜇𝑘𝑘

𝜇𝜇 �
1+𝛼𝛼

− 1� 𝐼𝐼𝑊𝑊𝛼𝛼 
𝑛𝑛𝑘𝑘

𝑛𝑛
𝑀𝑀𝑘𝑘 

𝑛𝑛𝑘𝑘

𝑛𝑛 �
𝜇𝜇𝑘𝑘

𝜇𝜇
𝑇𝑇𝑘𝑘 + 𝑇𝑇𝑊𝑊 �

𝜇𝜇 − 𝜇𝜇𝑘𝑘

𝜇𝜇 �� 

Note: Incomes sorted from poorest to richest; 𝐿𝐿𝑖𝑖 = 1
𝑛𝑛
∑ 𝑦𝑦𝑡𝑡

𝜇𝜇
𝑖𝑖
𝑡𝑡=1 ;  𝐿𝐿𝑗𝑗𝑘𝑘 = 1

𝑛𝑛
∑ 𝑦𝑦𝑡𝑡𝑘𝑘

𝜇𝜇
𝑗𝑗
𝑡𝑡=1 .  

Source: Author’s own construction.
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3 A discussion of alternative approaches 

In this section, I discuss alternative approaches to estimate the contribution of a subpopulation to 
inequality borrowed from the related literature that estimates the contribution of income factors 
(or sources). In general, the contributions will also inherit properties of the target inequality indices 
(e.g. replication and scale invariance). 

The first approach, for the sake of simplicity will be referred to here as the marginal (factor) 
decomposition. It defines the contribution of a factor as the change in inequality after it has been 
removed. For example, comparing initial and final distributions has been a common way of 
assessing the redistributive effect of taxes (e.g. Kakwani, 1977). This is quite intuitive but has some 
limitations. It assumes a specific path for adding the different factors in which the target comes 
last. This is sometimes called the first-round effect. If other rounds or sequences are considered 
(the factor is the first, second, etc. to be added), the contributions will be path-dependent. 
Furthermore, it produces an inconsistent decomposition in which the contributions of all factors 
do not add up to total inequality (although they can be re-scaled accordingly). The same 
inconsistency applies to further disaggregation of that same factor. 

A second approach is the Shapley decomposition (Chantreuil and Trannoy, 2013; Shorrocks, 
2013). It is an extension of the marginal approach defined as the average of the marginal 
contributions obtained in all possible sequences in which each factor can be introduced. The 
Shapley decomposition is consistent and path-independent, but it will vary with the level of 
disaggregation of the various factors. This latter shortcoming might be overcome assuming some 
hierarchy in the involved factors,8 although, in general, the Shapley decomposition (and its 
standard errors) might be cumbersome to compute in the presence of many groups and large 
samples.  

In the analysis of income sources, there are at least two possible factors to be considered, each one 
imposing a different normalization property as it defines the situation in which the contribution is 
zero. The contribution of an income source (e.g. a tax or a benefit) to total inequality is the change 
in inequality after (i) removing the income source (‘zero income’ decomposition); or (ii) equalizing 
the income source among all individuals (‘equalizing income’ decomposition) (e.g. Sastre and 
Trannoy, 2002). In the same spirit, these cases are adapted here. I define the marginal contribution 
of a group as the change in inequality after (i) removing the group from the population (‘zero 
subpopulation’ decomposition); 9 or (ii) replacing the incomes of its members with the population 
mean (‘equalizing subpopulation’ decomposition). Note that the latter implies a double 
equalization, removing group inequality and removing the gap with the population mean, which 
seems reasonable in the context of additively decomposable indices.10 Other alternatives seem less 
reasonable, such as (i) setting group incomes to zero; and (ii) replacing the incomes of group 

                                                 

8 For example, using the Nested Shapley or the Owen decompositions, see the discussion in Chantreuil and Trannoy 
(2013) and in Charpentier and Mussard (2011). 
9 This has been implicitly used to measure the contribution of certain countries to global inequality (e.g. Sala-i-Martin, 
2006).  
10 While in the case of the Atkinson family the mean should be replaced as a reference by the equally distributed 
equivalent income, in the case of Gini one needs to take also into account that a group with the population mean 
income and no inequality still has an impact on overall inequality through overlapping with the other groups. This 
implies that the normalization property with the marginal and Shapley approaches may need to be adapted to the 
specific index, while in the case of RIF it is directly inherited from the index. 
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members with the group mean. It would be hard to assume that a group does not contribute to 
inequality between groups in any of both situations.  

Finally, we briefly consider a third alternative approach used in the factor decomposition literature, 
i.e. the natural decomposition rules of some inequality indices, such as the coefficient of variation 
(Shorrocks, 1982 showed it had implications for other measures under various assumptions), or 
Gini and Theil (Morduch and Sicular, 2002). In the first two cases, factor contributions can be 
further decomposed into the product of factor income shares, variability, and correlation with total 
incomes. This approach is index-specific (only applies to indices with a natural decomposition 
rule) and is somehow myopic, it does not fully account for the contribution of a factor as will be 
discussed below. 

3.1 The zero-subpopulation decomposition 

Let 𝒚𝒚−𝒌𝒌 = 𝒚𝒚\𝒚𝒚𝒌𝒌 = (𝒚𝒚𝟏𝟏, … ,𝒚𝒚𝒌𝒌−𝟏𝟏,𝒚𝒚𝒌𝒌+𝟏𝟏, … ,𝒚𝒚𝑲𝑲) be the vector of the population remaining after 
removing group 𝑘𝑘, with the superscript −𝑘𝑘 applied to any statistic derived from it. The marginal 
zero subpopulation contribution of group 𝑘𝑘 measures the impact of this removal on overall 
inequality: 

𝛾𝛾𝑘𝑘 = 𝐼𝐼(𝒚𝒚) − 𝐼𝐼(𝒚𝒚−𝒌𝒌).      

This contribution can take positive or negative values. The normalization property behind this 
approach is that the contribution of a group is zero when it is not part of the population. For M 
and T, this is equivalent to the case in which the group has the same income mean and inequality 
of the rest, 𝜇𝜇𝑘𝑘 = 𝜇𝜇−𝑘𝑘 and 𝐼𝐼𝛼𝛼�𝒚𝒚𝒌𝒌� = 𝐼𝐼𝛼𝛼�𝒚𝒚−𝒌𝒌� because:11 

𝛾𝛾𝑘𝑘(𝐼𝐼𝛼𝛼) = 𝐼𝐼𝛼𝛼�(𝜇𝜇−𝑘𝑘𝟏𝟏𝒏𝒏−𝒌𝒌 , 𝜇𝜇𝑘𝑘𝟏𝟏𝒏𝒏𝒌𝒌)� + 𝑤𝑤𝐼𝐼𝛼𝛼
𝑘𝑘 �𝐼𝐼𝛼𝛼�𝒚𝒚𝒌𝒌� − 𝐼𝐼𝛼𝛼�𝒚𝒚−𝒌𝒌�� for 𝛼𝛼 = 0,1.  

Thus, if all groups had the same inequality and mean, all contributions to M or T would be zero 
and none of the observed inequality could be attributed to any group. Although this approach is 
interesting to assess the importance of a specific group on overall inequality, it does not seem 
adequate for attributing to each group its share of the total level of inequality, which is the objective 
here. 

The Shapley contribution will be the average of the two possible marginal contributions, 
depending on whether the group or the rest of the population is the first to be removed.12 The 
corresponding Shapley contributions is given by: 

𝛾𝛾′𝑘𝑘 = 1
2
�𝐼𝐼(𝒚𝒚) + 𝐼𝐼(𝒚𝒚𝒌𝒌) − 𝐼𝐼(𝒚𝒚−𝒌𝒌)�.     

                                                 

11 For any 𝛼𝛼 in the Entropy family, the group inequality condition is that 𝑤𝑤𝐼𝐼𝛼𝛼
𝑘𝑘 𝐼𝐼𝛼𝛼�𝒚𝒚𝒌𝒌� = (1 −𝑤𝑤𝐼𝐼𝛼𝛼

−𝑘𝑘)𝐼𝐼𝛼𝛼�𝒚𝒚−𝒌𝒌� because: 
𝛾𝛾𝑘𝑘(𝐼𝐼𝛼𝛼) = 𝐼𝐼𝛼𝛼�(𝜇𝜇−𝑘𝑘𝟏𝟏𝒏𝒏−𝒌𝒌 , 𝜇𝜇𝑘𝑘𝟏𝟏𝒏𝒏𝒌𝒌)� + 𝑤𝑤𝐼𝐼𝛼𝛼

𝑘𝑘 𝐼𝐼𝛼𝛼�𝒚𝒚𝒌𝒌� − (1 − 𝑤𝑤𝐼𝐼𝛼𝛼
−𝑘𝑘)𝐼𝐼𝛼𝛼�𝒚𝒚−𝒌𝒌�. 

12 For simplicity, I only consider here the case in which one group is compared against the rest of the population. 
Sastre and Trannoy (2002) provide the specific formula that can be used for the computation of a Shapley 
decomposition with 𝐾𝐾 factors. 
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It is noteworthy that in both cases, in general, the differential between the contribution of one 
group and the rest of the population only depends on the differential in group inequality regardless 
of their population shares or relative incomes: 

𝛾𝛾𝑘𝑘 − 𝛾𝛾−𝑘𝑘 = 𝛾𝛾′𝑘𝑘 − 𝛾𝛾′−𝑘𝑘 = 𝐼𝐼(𝒚𝒚𝒌𝒌) − 𝐼𝐼(𝒚𝒚−𝒌𝒌).    

Therefore, a highly unequal (equal) group will have a disproportionally larger positive (negative) 
contribution to inequality compared with other groups, even if its share of the population is almost 
zero.  

3.2 The equalizing subpopulation decomposition 

Alternatively, the contribution of a group can be defined as the impact of replacing their incomes 
with the population mean: 

𝛿𝛿𝑘𝑘 = 𝐼𝐼(𝒚𝒚) − 𝐼𝐼�(𝒚𝒚−𝒌𝒌,𝜇𝜇𝟏𝟏𝒏𝒏𝒌𝒌)�.     

This implies the same normalization property verified by the RIF decomposition of the 
Generalized Entropy family of indices discussed above. Therefore, a null contribution to these 
indices is obtained if the group has the population mean and zero group inequality, the latter being 
a more demanding condition than just the same inequality as in the rest of the population, required 
in the previous approach. Note that, in this case, the differential in the contribution between two 
groups will depend on the inequality differential and on means and population shares: 

𝛿𝛿𝑘𝑘 − 𝛿𝛿−𝑘𝑘 = 𝐼𝐼�(𝜇𝜇𝟏𝟏𝒏𝒏−𝒌𝒌 ,𝒚𝒚𝒌𝒌)� − 𝐼𝐼�(𝒚𝒚−𝒌𝒌, 𝜇𝜇𝟏𝟏𝒏𝒏𝒌𝒌)�.    

The contributions will not necessarily add up to the overall level of inequality, although they could 
be rescaled accordingly: 

𝛿𝛿𝑘𝑘 = 𝛿𝛿𝑘𝑘 𝐼𝐼(𝒚𝒚)
∑  𝛿𝛿𝑘𝑘𝐾𝐾
𝑘𝑘=1

. 

The corresponding Shapley contribution is given by: 

𝛿𝛿′𝑘𝑘 = 1
2
�𝐼𝐼(𝒚𝒚) + 𝐼𝐼�(𝜇𝜇𝟏𝟏𝒏𝒏−𝒌𝒌 ,𝒚𝒚𝒌𝒌)� − 𝐼𝐼�(𝒚𝒚−𝒌𝒌,𝜇𝜇𝟏𝟏𝒏𝒏𝒌𝒌)��.  

In the case of additively decomposable indices, mimicking the aggregate decomposition (between 
group 𝑘𝑘 and the rest of the population) we further split these contributions into the between-
group and within-group components: 

𝛿𝛿𝑘𝑘(𝐼𝐼𝛼𝛼) = 𝛿𝛿𝐵𝐵𝑘𝑘(𝐼𝐼𝛼𝛼) + 𝛿𝛿𝑊𝑊𝑘𝑘 (𝐼𝐼𝛼𝛼).     

With: 

𝛿𝛿𝐵𝐵𝑘𝑘(𝐼𝐼𝛼𝛼) = 𝐼𝐼𝛼𝛼�(𝜇𝜇−𝑘𝑘𝟏𝟏𝒏𝒏−𝒌𝒌 , 𝜇𝜇𝑘𝑘𝟏𝟏𝒏𝒏𝒌𝒌)� − 𝐼𝐼𝛼𝛼�(𝜇𝜇−𝑘𝑘𝟏𝟏𝒏𝒏−𝒌𝒌 , 𝜇𝜇𝟏𝟏𝒏𝒏𝒌𝒌)�.   

𝛿𝛿𝑊𝑊𝑘𝑘 (𝐼𝐼𝛼𝛼) = 𝑤𝑤𝐼𝐼𝛼𝛼
𝑘𝑘 𝐼𝐼𝛼𝛼�𝒚𝒚𝒌𝒌� + 𝑛𝑛−𝑘𝑘

𝑛𝑛
𝜋𝜋(𝛼𝛼)𝐼𝐼𝛼𝛼�𝒚𝒚−𝒌𝒌�.     

where 𝜋𝜋(𝛼𝛼) = ��𝜇𝜇
−𝑘𝑘

𝜇𝜇
�
𝛼𝛼
− �𝜇𝜇

−𝑘𝑘

𝜇𝜇∗
�
𝛼𝛼
� and 𝜇𝜇∗ = 𝑛𝑛−𝑘𝑘

𝑛𝑛
𝜇𝜇−𝑘𝑘 + 𝑛𝑛𝑘𝑘

𝑛𝑛
𝜇𝜇.   
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The marginal equalizing subpopulation contribution to M is approximately equal to the RIF 
contribution, with the same within-group term (given that 𝜋𝜋(0) = 0), and with a similar between-

group component (provided 𝑛𝑛
𝑘𝑘

𝑛𝑛
𝜇𝜇−𝜇𝜇𝑘𝑘

𝜇𝜇
 is small), using a well-known property of logarithms:13 

𝛿𝛿𝐵𝐵𝑘𝑘(𝑀𝑀) = 𝑛𝑛𝑘𝑘

𝑛𝑛
𝑙𝑙𝑙𝑙 𝜇𝜇

𝜇𝜇𝑘𝑘
− 𝑙𝑙𝑙𝑙 �1 + 𝑛𝑛𝑘𝑘

𝑛𝑛
𝜇𝜇−𝜇𝜇𝑘𝑘

𝜇𝜇
� ≈ 𝑆𝑆𝐵𝐵𝑘𝑘(𝑀𝑀).     

𝛿𝛿𝑊𝑊𝑘𝑘 (𝑀𝑀) = 𝑛𝑛𝑘𝑘

𝑛𝑛
𝑀𝑀𝑘𝑘 = 𝑆𝑆𝑊𝑊𝑘𝑘 (𝑀𝑀).     

A similar result can be obtained for the Shapley decomposition: 

𝛿𝛿′𝐵𝐵
𝑘𝑘(𝑀𝑀) = 𝑛𝑛𝑘𝑘

𝑛𝑛
𝑙𝑙𝑙𝑙 𝜇𝜇

𝜇𝜇𝑘𝑘
+ 1

2
𝑙𝑙𝑙𝑙 �

1+𝑛𝑛
𝑘𝑘

𝑛𝑛
𝜇𝜇𝑘𝑘−𝜇𝜇
𝜇𝜇

1−𝑛𝑛
𝑘𝑘
𝑛𝑛
𝜇𝜇𝑘𝑘−𝜇𝜇
𝜇𝜇

� ≈ 𝑆𝑆𝐵𝐵𝑘𝑘(𝑀𝑀).    

𝛿𝛿′𝑊𝑊
𝑘𝑘 (𝑀𝑀) = 𝑛𝑛𝑘𝑘

𝑛𝑛
𝑀𝑀�𝒚𝒚𝒌𝒌� = 𝑆𝑆𝑊𝑊𝑘𝑘 (𝑀𝑀);      

While the direct contribution of each group to between-group inequality is the same in marginal, 
Shapley and RIF approaches, the indirect contribution (i.e. the impact of the group mean on the 
relative incomes of other groups) is non-linear in the case of the Shapley and marginal 
contributions, but linear in the case of RIF. Thus, the latter might be seen as a linear approximation 
of the former. It turns out that in the case of M, the index with the best additively decomposability 
properties, the RIF and the marginal and Shapley equalizing subpopulation decompositions are 

empirically equivalent, provided the 𝑛𝑛
𝑘𝑘

𝑛𝑛
𝜇𝜇𝑘𝑘−𝜇𝜇
𝜇𝜇

 terms are small. One could only expect remarkable 
discrepancies in significant groups with an average income that is several times the population 
mean. The linearization that RIF imposes might be a reasonable assumption at least in the case of 
this index, bringing attractive properties at only a low price. These approaches may provide 
different results in other cases, like T, though. The empirical section will help to clarify this in 
practical terms. 

3.3 Natural decomposition rules 

If an index can be expressed as a weighted sum of incomes:  

𝐼𝐼(𝒚𝒚) = ∑ 𝑎𝑎(𝒚𝒚)𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 , 

then the contribution of a group can be defined by:  

𝜏𝜏𝑘𝑘(𝐼𝐼) = ∑ 𝑎𝑎(𝒚𝒚)𝑦𝑦𝑗𝑗𝑘𝑘𝑛𝑛𝑘𝑘
𝑗𝑗=1 . 

                                                 

13 Note that 𝑀𝑀�(𝜇𝜇−𝑘𝑘𝟏𝟏𝒏𝒏−𝒌𝒌 , 𝜇𝜇𝑘𝑘𝟏𝟏𝒏𝒏𝒌𝒌)� − 𝑀𝑀�(𝜇𝜇−𝑘𝑘𝟏𝟏𝒏𝒏−𝒌𝒌 , 𝜇𝜇𝟏𝟏𝒏𝒏𝒌𝒌)� = �𝑛𝑛
𝑘𝑘

𝑛𝑛
𝑙𝑙𝑙𝑙 𝜇𝜇

𝜇𝜇𝑘𝑘
+ 𝑛𝑛−𝑘𝑘

𝑛𝑛
𝑙𝑙𝑙𝑙 𝜇𝜇

𝜇𝜇−𝑘𝑘
� − �𝑛𝑛

𝑘𝑘

𝑛𝑛
𝑙𝑙𝑙𝑙 𝜇𝜇∗

𝜇𝜇
+ 𝑛𝑛−𝑘𝑘

𝑛𝑛
𝑙𝑙𝑙𝑙 𝜇𝜇∗

𝜇𝜇−𝑘𝑘
� =

𝑛𝑛𝑘𝑘

𝑛𝑛
𝑙𝑙𝑙𝑙 𝜇𝜇

𝜇𝜇𝑘𝑘
− 𝑙𝑙𝑙𝑙 𝜇𝜇∗

𝜇𝜇
= 𝑛𝑛𝑘𝑘

𝑛𝑛
𝑙𝑙𝑙𝑙 𝜇𝜇

𝜇𝜇𝑘𝑘
− 𝑙𝑙𝑙𝑙 �1 + 𝑛𝑛𝑘𝑘

𝑛𝑛
𝜇𝜇−𝜇𝜇𝑘𝑘

𝜇𝜇
�, and 𝑙𝑙𝑙𝑙 (1 + 𝑥𝑥) ≈ 𝑥𝑥 if 𝑥𝑥 is small, with 𝑥𝑥 = 𝑛𝑛𝑘𝑘

𝑛𝑛
𝜇𝜇−𝜇𝜇𝑘𝑘

𝜇𝜇
. The two 

approaches will be closer if the marginal contributions are rescaled to add up to total inequality, as shown in the 
empirical illustration. 
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M does not belong to this class of indices. In the case of T, 𝑎𝑎(𝒚𝒚) = 1
𝑛𝑛𝑛𝑛

ln
𝑦𝑦𝑗𝑗
𝑘𝑘

𝜇𝜇
 and the contribution 

is given by: 

𝜏𝜏𝑘𝑘(𝑇𝑇) = 1
𝑛𝑛
∑

𝑦𝑦𝑗𝑗
𝑘𝑘

𝜇𝜇
ln

𝑦𝑦𝑗𝑗
𝑘𝑘

𝜇𝜇
𝑛𝑛𝑘𝑘
𝑗𝑗=1 =  𝑛𝑛

𝑘𝑘

𝑛𝑛
𝜇𝜇𝑘𝑘

𝜇𝜇
𝑇𝑇𝑘𝑘 + 𝑛𝑛𝑘𝑘

𝑛𝑛
𝜇𝜇𝑘𝑘

𝜇𝜇
ln 𝜇𝜇𝑘𝑘

𝜇𝜇
= 𝑆𝑆𝑘𝑘(𝑇𝑇) − 𝑛𝑛𝑘𝑘

𝑛𝑛
�𝜇𝜇−𝜇𝜇

𝑘𝑘

𝜇𝜇
� (𝑇𝑇 + 1). 

That is, the contribution does not measure the total effect of group incomes. It only considers the 
direct effect on total inequality, but not the indirect effect on the function 𝑎𝑎(𝒚𝒚). This is true of 
the natural decomposition of any index. In the case of T, this means to ignore the impact of the 
average group mean on the relative incomes of the rest of the population – that affects both terms, 
inequality between groups and within groups, the latter through changes in group income shares. 
Given that the RIF approach is more general and accounts for both direct and indirect effects, this 
approach does not seem especially attractive in this context. 

4 Empirical analysis 

4.1 Data 

To illustrate the potential of the approach, I use the two most recent household budget surveys 
collected by the Instituto Nacional de Estatística (INE) in Mozambique: the Inquéritos ao Orçamento 
Familiar (IOF 2008/09 and 2014/15). Wellbeing is approximated using daily real per capita 
consumption (MEF/DEEF, 2016), i.e. nominal consumption adjusted to correct for seasonal 
variation in prices, deflated by dividing by the contemporary poverty line.  

The sample of the first survey consists of 10,832 households (51,177 individuals) interviewed 
between 2008 and 2009. The most recent survey is a pool of about 11,000 households interviewed 
up to three times between 2014 and 2015: 11,505 households (58,342 individuals) in the first 
quarter, 10,372 (50,770) in the second, and 11,315 (55,198) in the third one. 

For the analysis, I considered four types of subpopulations: consumption percentile groups, area 
of residence (rural or urban), province, and level of education attained by the household head. The 
analysis is focused on the M index and the RIF decomposition, because of its attractive 
decomposability properties, although I also provide results for other indices and approaches. 

4.2 Total inequality and the contribution by percentile 

Inequality increased in Mozambique between 1996/97 and 2002/03, followed by stagnation 
between 2002/03 and 2008/09, to raise again between 2008/09 and 2014/15 (Gradín and Tarp, 
2017). The increase during the last period was of 0.053 with Gini (13 per cent) and 0.078 with M 
(from 0.303 to 0.381, 26 per cent), as reported in Table 2 also for other indices (the change was 
robust due to Lorenz dominance). 

Figure 1 shows how the RIF values of different indices vary according to relative consumption. 
The RIF of M is independent of the distribution, while for T and Gini, they are based on the most 
recent distribution in Mozambique. The U-pattern becomes clear, and the higher sensitivity of M 
and, especially, T to higher relative consumption values compared with Gini (known to be more 
sensitive to central values), as well as the higher sensitivity of M to values close to 0. Figure 2 
shows, accordingly, the contribution by percentile group to inequality in Mozambique in 2014/15 
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as measured by these three indices for comparison.14 Table 3 summarizes the results for specific 
percentile ranges for several indices. 

The largest contributions to M came from the highest and, to a lesser extent, from the lowest 
percentile groups. This has the implication that in the analysis by other subpopulation groups, in 
the next epigraph, the average contribution will tend to be larger for those groups that are 
overrepresented at the top of the consumption scale. However, it is also noticeable that the range 
of lower percentiles with a significant contribution is longer and thus large groups with most of 
the population at the bottom of consumption levels will also have an important contribution to 
overall M inequality. On the other hand, people (and groups) around the mean consumption level 
(around percentile 73) do not contribute at all to inequality with M.  

More specifically, the contribution of the top 5 per cent population to M is almost 42 per cent, not 
only much higher than their demographic weight, but also higher than their contribution to total 
consumption (28.5 per cent). The contribution of the bottom 5 per cent is also above its 
demographic weight, 14.5 per cent (with only 0.8 per cent of total consumption). That is, both 
extremes, with only 10 per cent of the population altogether, contribute to almost 57 per cent of 
total inequality. On the opposite side, the contributions fall below 1 per cent between percentiles 
20th and 93rd. 

As for the other indices, the relative contributions of both poorest and richest percentiles are 
smaller with the Gini index (e.g. 8.4 and 24 per cent for the bottom and top 5 per cent, 
respectively), with the contribution of the rich below their contribution to total consumption. 
While the contribution of the poorest percentiles is also smaller with T (near 10 per cent) than 
with M, the contribution of the very richest is even higher: 45.6 per cent, but not as much as for 
I2. The Atkinson family presents the expected results, lower contribution of the richest and higher 
of the poorest for higher values of the inequality aversion parameter. 

When it comes to explaining the trend in inequality over time between 2008/09–2014/15 (Figure 
3 and Table 4), about 60 per cent of the increase in M was associated with a larger contribution of 
the top 5 per cent (42 per cent in the top 1 per cent), the result of a clear pro-rich growth pattern 
in consumption. On the other side, the bottom 5 per cent of the consumption distribution only 
contributed with less than 1 per cent of the inequality increase. Contributions to the change in 
inequality were indeed slightly negative in the first two percentiles, as they were between percentiles 
74 and 91. The contribution of the rich is much smaller but still significant in the case of Gini (38 
per cent) and declines with inequality aversion in the case of the Atkinson family.  

  

                                                 

14 Previous analyses of RIF functions by percentiles can be found in Gradín (2016 and 2018) or Davies et al. (2017). 
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Figure 1: RIF of relative consumption for M, T and Gini 

 

Note: The RIF of M is independent of the distribution. RIF of T (T=0.520) and Gini are computed for Mozambique 
2014/15.   Source: Author’s calculations based on IOF 2014/15. 

Figure 2: Relative contributions to inequality by percentile group, 2014/15 

 

Source: Author’s calculations based on IOF 2014/15. 
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Figure 3: Relative contributions to inequality increase (M) by percentile group, 2008/09–2014/15 

 
Source: Author’s calculations based on IOF 2008/09–2014/15. 

 

Table 2: Consumption inequality 

 
Per capita 
Consumption 
(Meticais) 

Gini I-1 I0=M I1=T I2 A.25 A.50 A.75 A1 A2 

2008/09 23.8 0.415 0.409 0.303 0.367 0.887 0.082 0.150 0.209 0.262 0.450 
2014/15 47.1 0.468 0.532 0.381 0.520 2.242 0.111 0.194 0.261 0.317 0.516 

Source: Author’s calculations based on IOF 2008/09–2014/15. 

Table 3: Relative RIF contributions to inequality by percentile range in 2014/15 

Percentile Population Consumption Inequality shares 

range share share Gini I-1 I0=M I1=T I2 A.25 A.50 A.75 A1 A2 

Bottom 5 5 0.8 8.4 33.6 14.7 9.7 9.3 10.4 11.2 12.0 13.0 18.9 

6-25 20 6.5 23.7 15.0 24.5 25.6 29.1 25.4 25.0 24.5 23.7 17.6 

26-75 50 34.3 31.1 -4.5 12.5 23.2 32.9 21.3 20.0 19.3 19.2 23.6 

76-95 20 30.0 12.9 13.9 6.5 -4.1 -18.3 -0.8 2.7 5.9 8.9 17.0 

Top 5 5 28.5 24.0 42.0 41.9 45.6 47.0 43.7 41.1 38.2 35.3 22.9 

Total 100 100 100 100 100 100 100 100 100 100 100 100 

Source: Author’s calculations based on IOF 2014/15. 
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Table 4: Relative RIF contributions to inequality increase between 2008/09 and 2014/15, by percentile range 

Percentile Population %∆Consumption Inequality share 

group share  Gini I-1 I0=M I1=T I2 A.25 A.50 A.75 A1 A2 

Bottom 5 5 0.7 -0.1 31.1 0.8 4.5 8.5 3.4 1.8 -0.3 -3.1 3.2 

6-25 20 5.6 15.1 11.3 21.5 21.6 28.6 20.8 20.3 19.9 19.8 15.6 

26-75 50 30.6 39.9 -11.0 19.5 32.0 36.9 30.9 30.7 31.3 32.6 40.7 

76-95 20 29.1 7.1 5.9 -1.8 -8.7 -18.9 -6.2 -3.2 -0.3 2.5 10.7 

Top 5 5 34.0 38.1 62.7 60.1 50.7 45.0 51.2 50.5 49.4 48.2 29.8 

Total 100 100 100 100 100 100 100 100 100 100 100 100 

Source: Author’s calculations based on IOF 2008/09–2014/15. 

4.3 Analysis by other subpopulations 

Table 5 reports the conventional aggregate additive decomposition of M in 2014/15 by province, 
area of residence and head’s education (rows labelled as ‘All’). For example, total inequality (0.381) 
can be split into the two corresponding between-province (0.067, 17.5 per cent) and within-
province (0.314, 82.5 per cent) terms. Table 5 also reports the more detailed RIF decomposition, 
showing that the capital Maputo city, representing only 5 per cent of the total population or 14 
per cent of total consumption, disproportionally contributed with 17 per cent of total inequality in 
that year, of which almost 10 percentage points were through the between-group component (56 
per cent of the overall between-group component). The large contribution of Maputo city was the 
result of combining two facts. It is the richest among all provinces (per capita consumption is 2.8 
times the national average), influencing its between-group contribution. It has the highest level of 
inequality too (within-group term). Something similar is found in Maputo province, even if to a 
lesser extent. With near 7 per cent of the population (and 11 per cent of consumption) Maputo 
province contributes with 9 per cent of total inequality, 3 per cent through the between-group 
component, and 6 per cent through the within-group component. 

On the other hand, northern provinces of Zambézia and Nampula show similar contributions of 
16 and 17 per cent of total inequality, respectively. But in these cases, the large contribution is the 
result of these provinces representing near 20 per cent of the population each. Indeed, they show 
an average RIF below the mean because their relative consumption levels are the lowest (78 and 
76 per cent of the average), with intermediate inequality levels (0.304 and 0.291). Thus, their 
contributions came almost entirely from the within-group component, to which they are the largest 
contributors (near 15 per cent each) given their large population sizes.  

In the middle between both extremes, other provinces like Niassa, Sofala, Inhambane, or Gaza, 
have a total contribution only slightly below their corresponding population shares. Not 
surprisingly, some provinces, with consumption levels around 87-103 per cent of the national 
average have a negligible contribution to between-group inequality, while only the richest ones, as 
mentioned above Maputo city and province, and the poorest (Niassa, Nampula and Zambézia with 
1.3-17 per cent) report substantial contributions through this component. Similarly, and 
consistently with the discussion above, urban and rural areas contribute about a half each to total 
inequality, although in the case of urban areas this is due to a higher average RIF, because they 
make up less than a third of the population.  

The analysis by the level of education attained by the household head shows that the small group 
of people in households whose head had some college contributed with 18 per cent of inequality, 
despite being only 2.5 per cent of the population. This contribution occurs mostly through the 
between-group component (14 per cent of total inequality), because mean consumption is almost 
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5 times the average. This group is also the most unequal, but given its small size only makes a small 
contribution to the within-group component (4 per cent, still above its population share). 
Educational groups below secondary education, on the contrary, contribute to inequality below 
their share of the population. 

The role of each of these subpopulations in explaining the increase of 0.078 in overall inequality 
between 2008/09 and 2014/15 is reported in Table 6.15 Overall, more than half the increase in 
inequality was between provinces, but also with a substantial increase within provinces. Maputo 
city and province, alone, are responsible for two thirds of the increase in inequality over this period 
(39.8 and 25.3 respectively). This is primarily the result of their higher contribution to inequality 
between groups (due to the significant increase in per capita consumption and thus in their average 
contribution to this term, especially in Maputo city). To a lesser extent, it is also the result of their 
higher contribution to the within-group term (due to the substantial increase in inequality within 
these two areas). Zambézia also explains 15 per cent of the increase in inequality, in this case almost 
entirely because of the increase in the level of inequality in this province. Niassa and Sofala show 
negative contributions due to the fall in inequality, while the negative contribution of Gaza is 
associated with its loss of population. 

In the same line, only about 20 per cent of the increase in inequality is between urban and rural 
areas. Urban areas explained 84 per cent of the total increase in overall inequality, but in this case, 
it is inequality within these areas that dominates (63 of the increase, compared with 21 per cent in 
the between-group case). Furthermore, more than half the increase in inequality was between 
educational groups, with the responsibility being more bipolarized in this case. The lowest 
educated group contributes to 43 per cent of the increase, especially due to the within-group 
component (30 per cent), the highest educated to another 44 per cent, especially to the between-
group term (34 per cent). 

Table 7 shows that, as expected, the contributions to M computed using the marginal and Shapley 
equalizing subpopulation approaches are almost identical to RIF contributions described above, 
with only non-negligible differences for the contribution of the very richest (top 5 percentile 
group). 

The results for RIF using T, instead of M, to measure inequality are reported in Table 8. In this 
case, not surprisingly, the contribution of richest groups to the within-group inequality tends to be 
higher than with M because of their higher relative weight (income share instead of population 
share). For example, the total contribution of Maputo city is now 21 per cent, 9 per cent through 
the between-group component, 12 through the within-group. In the same line, the contribution to 
the intra-group component made by households whose head has some college education has now 
doubled (7 per cent). The marginal and, to a lesser extent, the Shapley contributions to T are also 
not too far from the RIF values (Table 7), although in this case they diverge more than they did 
for M. Especially, they tend to increase even further the contribution of richest groups, like the 
top 5 percentile groups or urban areas (and decrease those of poorest groups). 

                                                 

15 In Gradín and Tarp (2017) using RIF regressions controlling for several characteristics at the same time, higher 
education of household heads was identified as the most relevant driving factor of increasing inequality, along more 
heads working in the private non-subsistence sector of the economy. 
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Table 5: RIF decomposition of inequality (M) in Mozambique by subpopulations in 2014/15 

 Descriptive (%) Inequality 
 Population Consumpt. Total Average contribution Total contribution 

    Total Between 
-Group 

Within 
-Group Overall Between-Group Within-Group 

Province 𝒏𝒏𝒌𝒌/𝒏𝒏 𝝁𝝁𝒌𝒌/𝝁𝝁 𝑴𝑴(𝒚𝒚𝒌𝒌) 𝑺𝑺�𝒌𝒌 𝑺𝑺�𝑩𝑩𝒌𝒌  𝑺𝑺�𝑾𝑾𝒌𝒌  𝑺𝑺𝒌𝒌 %𝑴𝑴 𝑺𝑺𝑩𝑩𝒌𝒌  %𝑴𝑴 %𝑴𝑴𝑩𝑩 𝑺𝑺𝑾𝑾𝒌𝒌  %𝑴𝑴 %𝑴𝑴𝑾𝑾 

Niassa 6.4 66.1 0.267 0.342 0.075 0.267 0.022 5.7 0.005 1.3 7.2 0.017 4.5 5.4 

Cabo Delgado 7.4 87.8 0.243 0.251 0.008 0.243 0.018 4.8 0.001 0.2 0.9 0.018 4.7 5.7 

Nampula 19.5 77.7 0.304 0.333 0.029 0.304 0.065 17.0 0.006 1.5 8.6 0.059 15.5 18.8 

Zambezia 18.8 76.0 0.291 0.325 0.035 0.291 0.061 16.0 0.006 1.7 9.7 0.055 14.3 17.4 

Tete 9.8 97.6 0.247 0.247 0.000 0.247 0.024 6.3 0.000 0.0 0.0 0.024 6.3 7.7 

Manica 7.5 93.2 0.259 0.261 0.002 0.259 0.020 5.1 0.000 0.0 0.3 0.019 5.1 6.2 

Sofala 7.9 102.7 0.382 0.383 0.000 0.382 0.030 7.9 0.000 0.0 0.0 0.030 7.9 9.6 

Inhambane 5.8 95.0 0.340 0.341 0.001 0.340 0.020 5.2 0.000 0.0 0.1 0.020 5.2 6.3 

Gaza 5.5 89.8 0.345 0.350 0.006 0.345 0.019 5.1 0.000 0.1 0.5 0.019 5.0 6.1 

Maputo province 6.6 169.4 0.376 0.542 0.167 0.376 0.036 9.3 0.011 2.9 16.4 0.025 6.5 7.8 

Maputo City 4.9 280.1 0.583 1.354 0.771 0.583 0.066 17.3 0.038 9.8 56.3 0.028 7.5 9.0 

All 100 100 0.381 0.381 0.067 0.314 0.381 100 0.067 17.5 100 0.314 82.5 100 

Area               

Rural 68.3 78.8 0.243 0.270 0.026 0.243 0.184 48.3 0.018 4.7 41.2 0.166 43.6 49.3 

Urban 31.7 145.7 0.541 0.622 0.081 0.541 0.197 51.7 0.026 6.7 58.8 0.171 44.9 50.7 

All 100 100 0.381 0.381 0.043 0.338 0.381 100 0.043 11.4 100 0.338 88.6 100 

Education               

Less than primary 30.5 72.4 0.285 0.333 0.047 0.285 0.101 26.6 0.014 3.8 15.2 0.087 22.8 30.3 

Lower Primary 43.9 82.1 0.247 0.265 0.018 0.247 0.116 30.5 0.008 2.1 8.4 0.108 28.4 37.8 

Upper Primary 13.9 105.9 0.300 0.302 0.002 0.300 0.042 11.0 0.000 0.1 0.2 0.042 11.0 14.6 

Lower Secondary 4.1 139.8 0.338 0.401 0.063 0.338 0.016 4.3 0.003 0.7 2.7 0.014 3.6 4.8 

Upper Secondary 3.3 207.1 0.432 0.775 0.343 0.432 0.026 6.8 0.011 3.0 12.2 0.014 3.8 5.0 

Technical 0.7 250.9 0.470 1.059 0.589 0.470 0.008 2.0 0.004 1.1 4.5 0.003 0.9 1.2 
Some college/ 
normal 2.5 469.1 0.574 2.719 2.146 0.574 0.068 17.8 0.053 14.0 56.7 0.014 3.8 5.0 

Unknown 1.1 94.7 0.334 0.335 0.001 0.334 0.004 0.9 0.000 0.0 0.0 0.004 0.9 1.2 

All 100 100 0.381 0.381 0.094 0.287 0.381 100 0.094 24.8 100 0.287 75.2 100 

Source: Author’s calculations based on IOF 2014/15. 
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Table 6: RIF decomposition of the change in inequality (M) in Mozambique by subpopulations between 2008/09 and 2014/15 

 Descriptive (%) Inequality 
 Population Consumption  Average contribution Total contribution 

    Total Between 
-Group 

Within 
-Group Total  Between-Group Within-Group 

Province ∆(𝒏𝒏𝒌𝒌/𝒏𝒏) ∆(𝝁𝝁𝒌𝒌/𝝁𝝁) ∆𝑴𝑴(𝒚𝒚𝒌𝒌) ∆𝑺𝑺�𝒌𝒌 ∆𝑺𝑺�𝑩𝑩𝒌𝒌  ∆𝑺𝑺�𝑾𝑾𝒌𝒌  ∆𝑺𝑺𝒌𝒌 %∆𝑴𝑴 ∆𝑺𝑺𝑩𝑩𝒌𝒌  %∆𝑴𝑴 ∆𝑺𝑺𝑾𝑾𝒌𝒌  %∆𝑴𝑴 

Niassa 0.5 -68.9 -0.078 -0.053 0.025 -0.078 -0.002 -2.0 0.002 2.3 -0.003 -4.3 

Cabo Delgado -0.5 -20.6 0.046 0.051 0.005 0.046 0.003 3.6 0.000 0.4 0.002 3.2 

Nampula 0.3 -22.9 0.001 0.030 0.029 0.001 0.007 8.8 0.006 7.4 0.001 1.5 

Zambezia -0.2 -2.3 0.060 0.066 0.007 0.060 0.012 15.2 0.001 1.6 0.011 13.6 

Tete 0.8 0.3 0.039 0.039 0.000 0.039 0.005 7.0 0.000 0.0 0.005 7.0 

Manica 0.5 7.9 0.049 0.040 -0.010 0.049 0.004 5.3 -0.001 -0.8 0.005 6.1 

Sofala -0.2 8.3 -0.038 -0.040 -0.001 -0.038 -0.004 -5.2 0.000 -0.1 -0.004 -5.1 

Inhambane -0.3 -3.5 0.082 0.083 0.001 0.082 0.004 5.2 0.000 0.1 0.004 5.1 

Gaza -0.8 5.7 0.013 0.005 -0.009 0.013 -0.002 -3.0 -0.001 -0.7 -0.002 -2.3 

Maputo Province 0.3 74.6 0.125 0.290 0.166 0.125 0.020 25.3 0.011 14.0 0.009 11.3 

Maputo City -0.4 95.2 0.148 0.685 0.537 0.148 0.031 39.8 0.025 32.5 0.006 7.3 

All 0.0 0.0 0.078 0.078 0.044 0.034 0.078 100 0.044 56.5 0.034 43.5 

Area             

Rural -1.3 -9.6 0.003 0.022 0.019 0.003 0.012 15.7 0.013 16.5 -0.001 -0.9 

Urban 1.3 19.3 0.139 0.190 0.051 0.139 0.066 84.3 0.016 21.2 0.049 63.1 

All 0.0 0.0 0.078 0.078 0.029 0.049 0.078 100 0.029 37.7 0.049 62.3 

Education             

Less than primary 5.4 -10.2 0.032 0.062 0.030 0.032 0.034 43.1 0.010 12.9 0.023 30.1 

Lower Primary -11.4 -5.7 0.018 0.028 0.010 0.018 -0.015 -18.9 0.004 4.5 -0.018 -23.4 

Upper Primary 1.3 -6.9 0.026 0.021 -0.006 0.026 0.007 8.5 -0.001 -0.9 0.007 9.4 

Lower Secondary 1.1 -21.6 0.015 -0.057 -0.072 0.015 0.002 3.2 -0.002 -2.0 0.004 5.1 

Upper Secondary 1.8 -24.5 0.057 -0.076 -0.133 0.057 0.013 16.2 0.004 5.2 0.009 11.0 

Technical -0.1 12.3 0.138 0.211 0.073 0.138 0.001 0.8 0.000 -0.1 0.001 0.8 
Some college/ 
normal 1.3 -8.5 0.023 -0.044 -0.067 0.023 0.034 44.2 0.027 34.4 0.008 9.8 

Unknown 0.6 32.0 0.152 0.059 -0.092 0.152 0.002 3.1 0.000 -0.5 0.003 3.6 

All 0.0 0.0 0.078 0.078 0.042 0.036 0.078 100 0.042 53.5 0.036 46.5 

Source: Author’s calculations based on IOF 2008/09–2014/15. 
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Table 7: Relative Decompositions (per cent) of overall inequality (M and T) by subpopulation, Mozambique 
2014/15 

 M T 
 RIF Marginal* Shapley RIF Marginal* Shapley 
Percentiles 𝑺𝑺𝒌𝒌 𝜹𝜹�𝒌𝒌 𝜹𝜹′𝒌𝒌 𝑺𝑺𝒌𝒌 𝜹𝜹�𝒌𝒌 𝜹𝜹′𝒌𝒌 
Bottom 5% 14.7 12.9 14.5 9.7 8.0 7.3 
6-25 24.5 23.1 23.8 25.6 20.2 17.5 
26-75 12.5 13.3 11.7 23.2 18.5 13.5 
76-95 6.5 6.8 7.0 -4.1 -2.9 1.8 
Top 5% 41.9 43.7 43.0 45.6 56.3 59.9 
All 100 100 100 100 100 100 
Province       

Niassa 5.7 5.7 5.7 5.3 5.1 4.1 
Cabo Delgado 4.8 4.8 4.8 4.7 4.5 4.2 
Nampula 17.0 17.0 17.0 20.0 18.9 17.8 
Zambezia 16.0 16.0 16.0 14.8 14.0 12.5 
Tete 6.3 6.2 6.3 5.2 5.0 5.1 
Manica 5.1 5.0 5.1 4.5 4.4 4.3 
Sofala 7.9 7.8 7.9 7.3 7.2 7.4 
Inhambane 5.2 5.1 5.2 4.7 4.6 4.5 
Gaza 5.1 5.0 5.1 4.6 4.5 4.3 
Maputo province 9.3 9.4 9.4 7.8 8.2 10.1 
Maputo City 17.3 18.0 17.4 21.2 23.5 25.6 
All 100 100 100 100 100 100 
Area       

Rural 48.3 48.2 48.1 46.6 39.5 38.7 
Urban 51.7 51.8 51.9 53.4 60.5 61.3 
All 100 100 100 100 100 100 
Education       

Less than primary 26.6 26.7 26.5 27.5 25.8 23.1 
Lower Primary 30.5 30.4 30.5 28.7 26.9 24.6 
Upper Primary 11.0 10.7 11.0 9.1 9.1 9.6 
Lower Secondary 4.3 4.2 4.3 3.2 3.2 4.0 
Upper Secondary 6.8 6.8 6.8 6.8 7.2 8.7 
Technical 2.0 2.0 2.0 1.9 1.9 2.4 
Some college/ 
normal 17.8 18.4 17.9 22.1 25.1 26.8 

Unknown 0.9 0.9 0.9 0.8 0.8 0.8 
All 100 100 100 100 100 100 

Note: (*) Marginal approach normalized so that group contributions add up to total inequality.  

Source: Author’s calculations based on IOF 2014/15. 
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Table 8: RIF decomposition of inequality (T) in Mozambique by subpopulations in 2014/15 

 Inequality 
 Index Average contribution Total contribution 

  Total Between 
-Group 

Within 
-Group Overall Between-Group Within-Group 

     Abs. % Abs. %  Abs. %  

Province 𝑻𝑻(𝒚𝒚𝒌𝒌) 𝑺𝑺�𝒌𝒌 𝑺𝑺�𝑩𝑩𝒌𝒌  𝑺𝑺�𝑾𝑾𝒌𝒌  𝑺𝑺𝒌𝒌 %𝑻𝑻 𝑺𝑺𝑩𝑩𝒌𝒌  %𝑻𝑻 %𝑻𝑻𝑩𝑩 𝑺𝑺𝑾𝑾𝒌𝒌  %𝑻𝑻 %𝑻𝑻𝑾𝑾 

Niassa 0.280 0.427 0.093 0.334 0.027 5.3 0.006 1.1 7.2 0.021 4.1 4.9 

Cabo Delgado 0.295 0.331 0.018 0.313 0.024 4.7 0.001 0.3 1.6 0.023 4.4 5.3 

Nampula 0.502 0.533 0.045 0.488 0.104 20.0 0.009 1.7 10.7 0.095 18.3 21.7 

Zambezia 0.333 0.410 0.051 0.358 0.077 14.8 0.010 1.9 11.7 0.067 12.9 15.4 

Tete 0.269 0.275 0.002 0.273 0.027 5.2 0.000 0.0 0.3 0.027 5.1 6.1 

Manica 0.298 0.316 0.008 0.308 0.024 4.5 0.001 0.1 0.7 0.023 4.4 5.3 

Sofala 0.481 0.481 -0.002 0.483 0.038 7.3 0.000 0.0 -0.2 0.038 7.3 8.7 

Inhambane 0.410 0.417 0.005 0.412 0.024 4.7 0.000 0.1 0.4 0.024 4.6 5.5 

Gaza 0.415 0.431 0.014 0.418 0.024 4.6 0.001 0.1 0.9 0.023 4.4 5.3 

Maputo province 0.461 0.618 0.142 0.477 0.041 7.8 0.009 1.8 11.3 0.031 6.0 7.1 

Maputo City 0.755 2.262 0.935 1.327 0.110 21.2 0.046 8.8 55.3 0.065 12.4 14.8 

All 0.520 0.520 0.082 0.438 0.520 100 0.082 15.8 100 0.438 84.2 100 

Area             

Rural 0.279 0.354 0.034 0.321 0.242 46.6 0.023 4.5 50.8 0.219 42.1 46.2 

Urban 0.703 0.878 0.071 0.807 0.278 53.4 0.022 4.3 49.2 0.255 49.1 53.8 

All 0.520 0.520 0.046 0.474 0.520 100 0.046 8.8 100 0.474 91.2 100 

Education             

Less than primary 0.390 0.468 0.079 0.389 0.143 27.5 0.024 4.6 18.2 0.119 22.8 30.6 

Lower Primary 0.280 0.340 0.041 0.299 0.149 28.7 0.018 3.4 13.5 0.131 25.2 33.9 

Upper Primary 0.349 0.340 -0.006 0.346 0.047 9.1 -0.001 -0.2 -0.6 0.048 9.3 12.5 

Lower Secondary 0.387 0.404 0.018 0.386 0.017 3.2 0.001 0.1 0.5 0.016 3.0 4.1 

Upper Secondary 0.571 1.063 0.294 0.768 0.036 6.8 0.010 1.9 7.4 0.026 4.9 6.6 

Technical 0.532 1.349 0.599 0.751 0.010 1.9 0.004 0.8 3.2 0.005 1.0 1.4 
Some college/ 
normal 0.632 4.605 3.071 1.534 0.115 22.1 0.077 14.7 57.7 0.038 7.4 9.9 

Unknown 0.382 0.390 0.008 0.382 0.004 0.8 0.000 0.0 0.1 0.004 0.8 1.0 

All 0.520 0.520 0.133 0.387 0.520 100 0.133 25.5 100 0.387 74.5 100 

Source: Author’s calculations based on IOF 2014/15. 
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5 Concluding remarks 

I proposed here a detailed decomposition of inequality indices by subpopulations, in which overall 
inequality can be decomposed into the contribution of the distinct groups making up the 
population. In the case of additively decomposable inequality indices, these contributions can be 
further decomposed into their between-group and within-group components. The main approach 
is based on the RIF of the corresponding inequality index, that extends the classical aggregate 
decomposition to identify the main drivers of inequality, in a way that is also consistent with the 
RIF regression-based decomposition of changes in inequality into compositional and structural 
effects. 

The RIF detailed decomposition is straightforward to compute and is shown to verify several 
appealing properties, such as consistency, path independence, and independence on the level of 
aggregation among others. However, there are other natural alternatives in the related literature of 
factor decomposition that can be considered and that do not impose such linearity. I argue that 
the marginal or Shapley decompositions using the equalizing subpopulation approach are the most 
relevant tool to attribute the contribution to inequality by subpopulations of additively 
decomposable indices. They assume that a group with all incomes equal to the population average 
does not contribute to inequality. I also show that RIF, marginal and Shapley approaches are 
approximately equal in the case of the Mean Log Deviation, the only index that is additively 
decomposable and whose decomposition is more genuine and invariant to the path followed to 
break inequality into between- and within-group components. In other cases, RIF and the other 
approaches might differ. 

The approach was illustrated with an empirical analysis of consumption inequality in Mozambique, 
a very poor and highly unequal country in sub-Saharan Africa that has shown an increasing trend 
in recent years. The analysis confirms that the choice of approach is not empirically relevant when 
it comes to decompose the Mean Log Deviation using the same normalization property. The 
richest groups, such as people living in Maputo or in other urban areas, with higher educational 
level, or in the top of the consumption distribution are responsible for the largest shares of 
inequality and for its increasing trend over time. The value assigned to the contribution of these 
richest groups to inequality, however, tends to be even higher in the case of the Shapley 
decomposition compared with RIF when the Theil index is used instead, even if the qualitative 
results are very similar. 

As a final remark, it is interesting to note that one application of this approach is estimating the 
impact of top incomes (either reported or adjusted) on inequality levels and trends. This can be 
done for affluent people in general or for specific rich groups, while using aggregate indices of 
inequality that make the most of the information on the entire distribution, unlike other statistics 
based only on partial information obtained from incomes at specific quantiles. This helps to 
analyse one of the topics that are becoming more relevant in the inequality literature (e.g. Atkinson, 
2005) using the conventional framework of measuring inequality.  
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